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Cell differentiation in a developing tissue is controlled by the concentration fields of signaling
molecules called morphogens. Formation of these concentration fields can be described by the
reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned
tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be char-
acterized by the local accumulation time, defined in terms of the local relaxation function. Here, we
show that this time satisfies an ordinary differential equation. Using this equation one can straightfor-
wardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation
function by solving the partial differential equation, as was done in previous studies. We derive this
ordinary differential equation together with the accompanying boundary conditions and demonstrate
that the earlier obtained results for the local accumulation time can be recovered by solving this
equation. [doi:10.1063/1.3624898]

I. INTRODUCTION

Cell differentiation in a developing organism is deter-
mined by gene expression that is controlled by concen-
tration fields of signaling molecules called morphogens.1, 2

These concentration fields, called morphogen gradients, can
be formed by reaction-diffusion mechanisms. In the sim-
plest case, this mechanism involves local production of the
morphogen, its diffusion through the tissue, and degradation
(source-sink model).3–10 Initially, the morphogen concentra-
tion is zero. The concentration increases with time and ap-
proaches its position-dependent steady-state value as time
goes from zero to infinity. If the gradient formation at a given
point of the patterned tissue is fast compared to the cell differ-
entiation at this point, then the latter occurs under the action
of the steady-state gradient. When the time scale separation
does not exist, the cell differentiation occurs under the action
of the morphogen concentration profile that varies in time.
Crick11 was the first who understood the role of the time scale
separation in the dynamics of cell differentiation controlled
by morphogens gradients.

When tackling the question of the time scale separa-
tion one faces with a conceptual problem: how to introduce
a local time that characterizes the morphogen gradient for-
mation at a given point x of the patterned tissue. In recent
papers,12, 13 we suggested an approach to the problem based
on the use of the local relaxation function. We introduced the
local accumulation time, τ (x), defined in terms of this func-
tion, that provided a time scale for the gradient formation at
point x. For several simple models, we derived expressions
that give τ (x) as a function of the problem parameters such
as the diffusion constant of the morphogen and its degrada-
tion rate, the distribution of the source of the morphogen,
and the length of the interval that models the patterned tis-
sue. In these papers, we also discuss biological applications
of the local accumulation time. Recently, Kolomeisky14 ap-
plied our approach to consider the gradient formation prob-

lem in the framework of a discrete model of the morphogen
dynamics.

In the present paper, we show that one can find τ (x)
avoiding consideration of the relaxation function. It turns out
that τ (x) satisfies an ordinary differential equation. We derive
this equation as well as accompanying boundary conditions
and demonstrate how the earlier derived results for τ (x) can
be obtained by solving this equation. The new way of find-
ing τ (x) allows one to bypass the need of solving the partial
differential equation that is necessary for finding the local re-
laxation function.

The outline of the paper is as follows. In Sec. II, we
formulate the generic model and introduce some definitions
and relations that are used in Sec. III when deriving the ordi-
nary differential equation for τ (x). The expressions for τ (x)
obtained for different particular reaction-diffusion models in
Refs. 12 and 13 are recovered by solving the ordinary differ-
ential equation for τ (x) in Sec. IV. Some concluding remarks
are made in final Sec. V.

II. MODEL AND DEFINITIONS

Consider a one-dimensional model of the patterned tis-
sue, in which the tissue is modeled by an interval of length L

with reflecting boundaries. Let c(x, t) be the particle concen-
tration at point x of the interval, 0 < x < L, at time t . The par-
ticles are injected into the interval with the position-dependent
injection rate q(x), which is independent of time. The source
of the particles is characterized by the total injection rate,
Q = ∫ L

0 q(x)dx, and the injection density, pq(x) = q(x)/Q,
that is normalized to unity. Injection starts at t = 0, when the
interval is free from particles. The particles diffuse with dif-
fusivity D and are degraded with the rate constant k.

As t → ∞, c(x, t) approaches its steady-state (ss) value
css(x). It is convenient to describe the time course of the
concentration at point x in terms of the local relaxation
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function R(t |x):

c(x, t) = css(x) + [c(x, 0) − css(x)]R(t |x)

= css(x) [1 − R(t |x)] , (2.1)

where we have used the fact that c(x, 0) = 0 in the second
equality. The notation R(t |x) is used to stress the point that
our analysis focuses on time-dependent formation of the con-
centration profile at a fixed point x. The relaxation function,

R(t |x) = 1 − c(x, t)

css(x)
, (2.2)

monotonically decreases from unity at t = 0 to zero as
t → ∞.

The local accumulation time, τ (x), is defined in terms of
the relaxation function as12, 13

τ (x) =
∫ ∞

0
R(t |x)dt. (2.3)

It provides a time scale that characterizes the gradient forma-
tion at point x. Denoting the Laplace transform of a function
f (t) by f̂ (s) : f̂ (s) = ∫ ∞

0 e−stf (t)dt , we can write τ (x) as

τ (x) = R̂(0|x) = lim
s→0

(
1

s
− ĉ(x, s)

css(x)

)
. (2.4)

We assume that the relaxation function tends to zero as t →
∞ fast enough, so that the integral in Eq. (2.3) converges, and
the limit in Eq. (2.4) is well defined.

The concentration c(x, t) can be expressed in terms of the
propagator or the Green’s function, G(x, t − t0|x0), which is
the probability density of finding the particle at point x at time
t on condition that the particle was injected at point x0 at time
t0. The expression is

c(x, t) =
∫ t

0
dt0

∫ L

0
G(x, t − t0|x0)q(x0)dx0. (2.5)

Introducing the notation 〈G(x, t |x0)〉q for the propagator
averaged over x0,

〈G(x, t |x0)〉q =
∫ L

0
G(x, t |x0)pq(x0)dx0, (2.6)

we can write Eq. (2.5) as

c(x, t) = Q

∫ t

0
〈G(x, t − t0|x0)〉qdt0. (2.7)

Using the relation css(x) = Q〈Ĝ(x, 0|x0)〉q, we can ex-
press τ (x), Eq. (2.4), in terms of the Laplace transform of the
averaged propagator:

τ (x) = lim
s→0

1

s

[
1 − 〈Ĝ(x, s|x0)〉q

〈Ĝ(x, 0|x0)〉q

]
. (2.8)

Taking the limit we obtain

τ (x) = − 1

〈Ĝ(x, 0|x0)〉q
∂〈Ĝ(x, s|x0)〉q

∂s

∣∣∣∣∣
s=0

. (2.9)

In Sec. III, we use this relation to derive an ordinary differen-
tial equation for τ (x).

III. THEORY

The local accumulation time, Eq. (2.9), can be written as
the ratio of functions μ(x) and ν(x),

τ (x) = μ(x)

ν(x)
, (3.1)

defined as

μ(x) = 〈w(x|x0)〉q , ν(x) = 〈u(x|x0)〉q, (3.2)

where

u(x|x0) = Ĝ(x, 0|x0) =
∫ ∞

0
G(x, t |x0)dt, (3.3)

w(x|x0) = − ∂Ĝ(x, s|x0)

∂s

∣∣∣∣∣
s=0

=
∫ ∞

0
tG(x, t |x0)dt.

(3.4)
Note that function, u(x|x0), has the following interpretation:
u(x|x0)dx = Ĝ(x, 0|x0)dx is the mean occupation time15, 16

of the interval of length dx located at point x by a diffusing
particle that starts from point x0. We present some arguments
that, hopefully, make this interpretation intuitively appealing
in the Appendix.

The propagator, G(x, t |x0), satisfies

∂G(x, t |x0)

∂t
= D

∂2G(x, t |x0)

∂x2

−kG(x, t |x0), 0 < x, x0 < L, (3.5)

with the initial and boundary conditions

G(x, 0|x0) = δ(x − x0) ,
∂G(x, t |x0)

∂x

∣∣∣∣
x=0,L

= 0. (3.6)

Integrating Eq. (3.5) with respect to time from zero to infinity
we find that function u(x|x0) satisfies

D
d2u(x|x0)

dx2
− ku(x|x0) = −δ(x − x0), 0 < x, x0 < L,

(3.7)

where we have used the initial condition in Eq. (3.6). Multi-
plying both sides of Eq. (3.5) by t and then integrating with
respect to time from zero to infinity, we find that function
w(x|x0) satisfies

D
d2w(x|x0)

dx2
− kw(x|x0) = −u(x|x0) , 0 < x, x0 < L,

(3.8)

where we have used the definition of function u(x|x0),
Eq. (3.3).

Similar manipulations with the boundary conditions in
Eq. (3.6) lead to the following boundary conditions for
Eqs. (3.7) and (3.8):

du(x|x0)

dx

∣∣∣∣
x=0,L

= dw(x|x0)

dx

∣∣∣∣
x=0,L

= 0. (3.9)
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Solving Eq. (3.7) with the boundary conditions in Eq. (3.9),
we obtain

u(x|x0) = λ

D sinh(L/λ)

×

⎧⎪⎪⎨
⎪⎪⎩

cosh

(
L − x0

λ

)
cosh

(x

λ

)
, 0 < x < x0

cosh
(x0

λ

)
cosh

(
L − x

λ

)
, x0 < x < L

,

(3.10)

where λ = √
D/k.

Averaging Eqs. (3.7)–(3.9) over x0, we find that the func-
tions ν(x) and μ(x) satisfy

D
d2ν(x)

dx2
− kν(x) = −pq(x) , 0 < x < L, (3.11)

D
d2μ(x)

dx2
− kμ(x) = −ν(x) , 0 < x < L, (3.12)

with boundary conditions

dν(x)

dx

∣∣∣∣
x=0,L

= dμ(x)

dx

∣∣∣∣
x=0,L

= 0. (3.13)

To derive the desired ordinary differential equation for
τ (x), we write Eq. (3.1) as

ν(x)τ (x) = μ(x). (3.14)

Differentiating this twice with respect to x, we obtain

ν(x)
d2τ (x)

dx2
+ 2

dν(x)

dx

dτ (x)

dx
+ τ (x)

d2ν(x)

dx2
= d2μ(x)

dx2
.

(3.15)

Using the relation

d2μ(x)

dx2
−τ (x)

d2ν(x)

dx2
= 1

D
(pq(x)τ (x)−ν(x)), 0< x < L,

(3.16)

that follows from Eqs. (3.11), (3.12) and (3.14), we can write
Eq. (3.15) as

Dν(x)
d2τ (x)

dx2
+ 2D

dν(x)

dx

dτ (x)

dx
− pq(x)τ (x)

= −ν(x), 0 < x < L. (3.17)

This is the desired ordinary differential equation for the local
accumulation time.

Boundary conditions for this equation can be obtained
from Eqs. (3.13) and (3.14). They have the following form:

dτ (x)/dx|x=0,L = 0. (3.18)

An expression giving function ν(x) in terms of the injec-
tion density, pq(x), can be obtained by averaging u(x|x0),

Eq. (3.10), over x0. The result is

ν(x) = λ

D sinh(L/λ)

[
cosh

(
L − x

λ

)

×
∫ x

0
cosh

(x0

λ

)
pq(x0)dx0

+ cosh
(x

λ

) ∫ L

x

cosh

(
L − x0

λ

)
pq(x0)dx0

]
.

(3.19)

Relations in Eqs. (3.17)–(3.19) are the main results of
the present paper. In Sec. IV, we use them to derive the ex-
pressions for the local accumulation time obtained earlier by
means of the local relaxation function.12, 13

IV. ILLUSTRATIVE EXAMPLES

We begin with the case of the source localized at the left
boundary of the interval,

pq(x0) = δ(x0). (4.1)

In this case function ν(x), Eq. (3.19), takes the form

ν(x) = λ cosh((L − x)/λ)

D sinh (L/λ)
, 0 < x < L, (4.2)

and Eq. (3.17) can be written as

d2τ (x)

dx2
− 2

λ
tanh

(
L − x

λ

)
dτ (x)

dx

− 1

λ
tanh

(
L

λ

)
δ(x)τ (x) = − 1

D
, 0 < x < L.

(4.3)

Boundary conditions for this equation are given in Eq. (3.18).
Integrating Eq. (4.3) over a small interval near x = 0, it

can be shown that τ (x) satisfies

d2τ (x)

dx2
− 2

λ
tanh

(
L − x

λ

)
dτ (x)

dx
= − 1

D
, 0 < x < L,

(4.4)

with boundary conditions

dτ (x)

dx

∣∣∣∣
x=0

= 1

λ
tanh

(
L

λ

)
τ (0),

dτ (x)

dx

∣∣∣∣
x=L

= 0.

(4.5)

Solving the equation we find

τ (x) = 1

2k

[
1 + L

λ
coth

(
L

λ

)
− L − x

λ

× tanh

(
L − x

λ

)]
, 0 < x < L, (4.6)

where we have used the relation k = D/λ2.
As the length of the interval tends to infinity,

L → ∞, the formulas significantly simplify. In this case
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function ν(x) is

ν(x) = λ

D
e−x/λ, x > 0, (4.7)

and the differential equation for τ (x) takes the form

d2τ (x)

dx2
− 2

λ

dτ (x)

dx
= − 1

D
, x > 0. (4.8)

This equation should be solved with the boundary condition

dτ (x)

dx

∣∣∣∣
x=0

= 1

λ
τ (0). (4.9)

The solution is given by

τ (x) = 1

2k

(
1 + x

λ

)
, x > 0. (4.10)

Next, we consider the case of distributed source of the
particles injected into a semi-infinite interval, L → ∞,

pq(x0) = 1

lq
e−x0/lq , x0 > 0, (4.11)

where lq is the mean injection length, lq = ∫ ∞
0 x0pq(x0)dx0.

Here, function ν(x), Eq. (3.19), is

ν(x) = 1

k
(
λ2 − l2

q

) (
λe−x/λ − lqe

−x/lq
)

, x > 0,

(4.12)
and Eq. (3.17) leads to

d2τ (x)

dx2
− 2

e−x/λ − e−x/lq

λe−x/λ − lqe
−x/lq

dτ (x)

dx

+
(
λ−2 − l−2

q

)
lqe

−x/lq

λe−x/λ − lqe
−x/lq

τ (x) = − 1

D
, x > 0.

(4.13)

This equation should be solved with the reflecting boundary
condition at x = 0,

dτ (x)

dx

∣∣∣∣
x=0

= 0. (4.14)

One can check that the solution is given by

τ (x) = 1

2k

[ (
1 + x

λ

) λe−x/λ

λe−x/λ − lqe
−x/lq

+ 2l2
q

l2
q − λ2

]
, x > 0. (4.15)

As the mean injection length vanishes, lq → 0, this reduces
to the expression for τ (x) in Eq. (4.10), as it must be.

The expression for τ (x) given in Eqs. (4.6), (4.10)
and (4.15) has been derived earlier12, 13 using the relaxation
function. Here, we have demonstrated that these results can be
obtained by solving the ordinary differential equation for the
local accumulation time. One can find detailed discussion of
τ (x) for the three models considered above, including plots of

the x-dependences of the local accumulation time in Ref. 13.
In these three models one can obtain analytical expressions
for τ (x) by both methods, since the injection rates, q(x), are
simple functions of x. When q(x) is not that simple, to find
τ (x), one has to numerically solve the problem. Here, the sug-
gested approach has an obvious advantage since it allows one
to avoid the numerical solution of the partial differential equa-
tion and find τ (x) by solving the ordinary differential equa-
tion, Eq. (3.17).

V. CONCLUDING REMARKS

In Refs. 12 and 13, we study the local accumulation time,
τ (x), using a straightforward approach, i.e., we first find the
local relaxation function, which is then used to find τ (x). Here
we suggest an alternative way of finding τ (x), which avoids
the calculation of the relaxation function. Equations (3.17)-
(3.19) show that τ (x) can be found by solving the ordinary
differential equation. This is the main result of the present
paper.

One can write Eq. (3.17) in a form that is identical to the
equation for the mean first-passage time17

D

[
d2τ (x)

dx2
− β

dU (x)

dx

dτ (x)

dx

]
−γ (x)τ (x) = −1 , 0 < x < L, (5.1)

where βU (x) = − ln(ν(x)2) and γ (x) = pq(x)/ν(x) can be
interpreted as a potential at point x measured in the thermal
energy units and a position-dependent sink term, respectively.
However, the local accumulation time, which describes the
formation of nonequilibrium steady-state concentration pro-
file, is a fundamentally different quantity than the mean first-
passage time. The latter characterizes an individual particle,
whereas the former characterizes collective behavior of the
system. When the interval is not free from particles at t = 0,
the local accumulation time becomes a functional of the initial
concentration profile, c(x, 0), and the theory developed above
is inapplicable.

Finally, we note that the definition of τ (x) in Eq. (2.3) is
based on the interpretation of the negative partial derivative of
the local relaxation function with respect to time as the prob-
ability density, ϕ(t |x), of time associated with the formation
of the steady-state concentration profile at point x,

ϕ(t |x) = −∂R(t |x)

∂t
. (5.2)

The mean time that characterizes the formation process, τ (x),
is

τ (x) =
∫ ∞

0
tϕ(t |x)dt. (5.3)

Integrating this by parts, one recovers the definition of τ (x) in
Eq. (2.3).

At the same time, using Eqs. (3.1)–(3.4) one can write
τ (x) as

τ (x) = 1

〈Ĝ(x, 0|x0)〉q

∫ ∞

0
t〈G(x, t |x0)〉qdt. (5.4)
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A comparison of the expressions in Eqs. (5.3) and (5.4) shows
that the probability density ϕ(t |x) can be written in terms of
the propagator averaged over the particle injection point x0

as

ϕ(t |x) = 〈G(x, t |x0)〉q
〈Ĝ(x, 0|x0)〉q

. (5.5)

This expression allows the following interpretation: The prob-
ability density is the ratio of the probability of finding a par-
ticle, injected at t = 0, within the interval dx located at point
x at time t , 〈G(x, t |x0)〉qdx, to the mean occupation time of
this interval, 〈Ĝ(x, 0|x0)〉qdx, discussed in the Appendix.
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APPENDIX: MEAN OCCUPATION TIME

Let {x(t ′)}t be a particle trajectory observed for time t ,
and I
(x) be the indicator function of interval 
 defined as

I
(x) =
{

1 , x ∈ 


0 , x /∈ 

. (A1)

Time θ
({x(t ′)}t ) spent by the trajectory within the interval,
called the occupation time,15, 16 is the functional of the trajec-
tory of the form

θ


({x(t ′)}t
) =

∫ t

0
I
(x(t ′))dt ′. (A2)

The mean occupation time spent within the interval by
trajectories that start from point x0, 〈〈θ
({x(t ′)}t )〉〉x0 , is given
by

〈〈θ


({x(t ′)}t
)〉〉x0 =

∫ t

0
〈〈I
(x(t ′))〉〉x0dt ′, (A3)

where the double angular brackets with subscript x0, 〈〈...〉〉x0 ,
denote the averaging over all possible trajectories starting
from x0.

The indicator function can be written as an integral of the
δ-function over the interval 
:

I
(x) =
∫




δ(x ′ − x)dx ′. (A4)

Substituting this into Eq. (A3) we obtain

〈〈θ
({x(t ′)}t )〉〉x0 =
∫ t

0
dt ′

∫



〈〈δ(x ′ − x(t))〉〉x0dx ′.

(A5)
The integrand here is the path integral representation of the
propagator18

〈〈δ(x − x(t))〉〉x0 = G(x, t |x0). (A6)

Therefore, the mean occupation time is

〈〈θ
({x(t ′)}t )〉〉x0 =
∫ t

0
dt ′

∫



G(x ′, t ′|x0)dx ′. (A7)

As the observation time tends to infinity, t → ∞, the mean
occupation time in Eq. (A7) takes the form

〈〈θ


({x(t ′)}∞
)〉〉x0 =

∫



Ĝ(x, 0|x0)dx. (A8)

This shows that Ĝ(x, 0|x0)dx is the mean occupation time
of the interval of length dx located at point x by trajectories
which start from x0.
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